

- Previous Contaminant Fate and Transport Modeling performed by Bob Whittier, using RT3D (TEC 2007)
- Modeling purpose: Conduct Tier 3 risk assessment
 - Establish site-specific risk-based level (SSRBL) for selected compounds
 - DOH EALs: Benzene: 0.005 mg/L; Total Petroleum Hydrocarbons (TPH): 0.100 mg/L
 - Must show compliance with MCL at drinking water source
- Modeling Question:
 - "How close can a hypothetical LNAPL plume get to the Red Hill Shaft without exceeding MCL or EAL?"
 - Note: NAPL has never been detected at the groundwater surface

- What this model DOESN'T do:
 - Simulate the LNAPL migration in the vadose zone
 - · Geologic CSM suggests NAPL is not migrating to the water table
 - Simulate potential LNAPL migration along the water table
 - NAPL has not been detected on the groundwater surface
- What the model DOES do:
 - Estimate the degradation rate of dissolved contamination
 - Provide the foundation for Site Specific Risk Based Risk Based Level (SSRBL)

- Modeling Approach
- Select modeling code
 - Compatible with MODFLOW
 - MODPATH, MT3D, RT3D

- MODPATH

- Particle tracking, good for delineating zones of contribution and estimating groundwater velocity
- No dispersion

-MT3D

- Simultaneously simulate transport of multiple species
- Include dispersion, sorption, first order decay
- Some challenges in acquiring needed parameters

-RT3D

- Similar to MT3D, but can simulate biodegradation
- Very challenging to get required parameters!

Modeling Approach

- Modeled source area as an immobile LNAPL Plume
- Simulated microbial mediated degradation in the dissolved plume
- Estimated distance dissolved plume travels prior to degrading to < MCL or EAL

RT3D required parameters

- Dispersivity

- Estimated from rock core logs (50 ft) and USGS reports (250 ft)
- Geometric mean 112 ft
- Estimated Lahaina Tracer Test Value 82 ft (for comparison)

Sorption

- Assumed to be zero
- Conservative assumption (probably not true)

Natural Attenuation Parameters (NAPs)

- Concentrations
- Consumptive rate
- Reaction rates and coefficients

Model Simulations

- Base estimate proximity of LNAPL to RHS and still be compliant at the Red Hill Shaft
 - TPH
 - Benzene
- -Plume size
 - Step-wise increase in width and length
- Infiltration only
 - Simulate the impact on groundwater of recharge moving through contamination in the unsaturated zone
- Reaction rates

Total Petroleum Hydrocarbons

- Hypothetical LNAPL footprint: red hatched oval
- Results
 - LNAPL must extend to point mid-way between RHMW01 and RHMW05 for an exceedance to occur at the Red Hill Shaft
- TPH Dissolution Rate
 - -2.7 mg/d/ft²
 - Compares favorably with analytical model
 - (Wiedeimerer et al 1995)

PRIVILEGED, Preliminary DRAFT pending full privilege review, Subject to Deliberative Process Privilege, 5 U.S.C. 552(b)(5): May contain Highly Procurement Sensitive, Source Selection Information, See FAR 2.101 and 3.104, 5 U.S.C. 552(b)(3), 5 USC 552(b)(5), critical infrastructure information, 5 USC 552(b)(3), well location information 5 USC 552(b)(9) or other information not subject to disclosure under Red Hill AOC para. 10.d. DRAFT to be destroyed and replaced when final marked for redaction version is provided.

Benzene

- Results
 - A hypothetical LNAPL plume that reaches beyond RHMW01 could cause an exceedance at the RHS
- Concentration must be reduced by a factor of 150
 - TPH, only requires a 45 fold reduction
- But only infrequent, trace benzene detections, and benzene not a major constituent of JP-8
 - Benzene may not be the best COPC for modeling and planning purposes

Task #6: Update the CF&T Model and Evaluate Whether to Perform Tracer Study: Previous Modeling Conclusions

Modeling Conclusions

- Jet fuels (JP-5) solubility is relatively low
 - TPH solubility of ~5 parts per million (mg/L)
 - Benzene content low, 0.7 mg/L maximum
 - May be much less
- Red Hill dissolved contamination is not extremely mobile
- Natural attenuation reduces TPH concentrations to < EAL over distances of 1000 – 2000 ft
- Properly characterizing NAP reaction rates is important for RT3D modeling

Task #6: Update the CF&T Model and Evaluate Whether to Perform Tracer Study: Previous Modeling Conclusions

Uncertainties

- Actual solubility of JP-5 and JP-8
 - One analysis lists JP-8 solubility as 12 mg/L
- Stoichiometry
 - Bulk rates of natural attenuation parameter utilization
- Reaction rates and coefficients
 - Data indicate that these are particularly important parameters
- Groundwater flow paths

- Existing CF&T Model Strengths
 - RT3D is an industry standard model developed to model petroleum hydrocarbons
 - Leverage considerable previous effort by local experts
 - Models existing site data reasonably well (e.g., concentrations of dissolved oxygen and methane beneath UST facility)
 - Supports concept of modeling natural attenuation in the aquifer
- Recommendations for CF&T Model Improvement
 - Better define geometry, stratigraphy, and hydraulic properties
 - Evaluate effective porosity and dispersivity
 - Re-evaluate evaluate COPCs for JP-8
 - consider: presence, mobility, degradation, toxicity
 - Evaluate solubility of JP-8
 - Refine degradation rates for COPCs
 - Gather additional NAP data: dissolved oxygen, nitrate, ferrous iron, sulfate, and methane

- Recommendations for CF&T Model Improvement (cont'd)
- Gather and incorporate new data:
 - From USGS studies (e.g., pumping test of Halawa Shaft)
 - From new monitoring wells and sampling
 - From new well borehole stratigraphy and geochemical data
 - Gather additional NAP data
 - · e.g., dissolved oxygen, nitrate, ferrous iron, sulfate, and methane

- Upon completion of all other tasks, and review of results, evaluate whether to perform a tracer study
- Purpose:
 - Study could refine site-specific estimates of field-scale:
 - · groundwater velocity and flow direction,
 - · hydraulic conductivity,
 - · effective porosity, and
 - Dispersivity
 - Refine the SSRBLs
 - Inform Contingency Planning
- Considerations:
 - Does the new data suggest that contaminants are escaping the facility or otherwise pose an imminent and substantial endangerment?
 - Is groundwater flow regime amenable to a tracer study?

- Tracer Study Design Parameters and Required Data:
 - Detailed hydrogeologic characterization
 - Tracer: non-toxic, easily measured, non-adsorptive, resistant to biodegradation; no undesirable color or odor
 - Injection points directly upgradient of monitoring points and close enough to define the complete break-though curve
 - Recommend pumping test to better define drawdown capture zone to select a tracer injection well location directly up-gradient from monitoring wells and close enough to define the complete tracer break-though curve
 - Use refined models and existing data to evaluate suitability of existing wells
 - Additional hydraulic head distribution data